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Abstract--The present paper studies the infiltration of an incompressible liquid in an initially dry (or 
partially dry), deformable sponge-like material made of an incompressible constituent in the slug-flow 
approximation having in mind the application to some industrial processes involving flow through 
sponge-like materials and, in particular, some composite materials manufacturing processes. The resulting 
initial-boundary value problem is of Stefan type, with suitable interface conditions and evolution 
equations describing the position of the interfaces delimiting the saturated region within the porous 
material. Different models are then suggested in the saturated region, depending on the importance of 
the inertial terms and on the constitutive equation for the stress. Comparison of the simulation with known 
experimental results is satisfactory. Copyright © 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

Many manufacturing processes used to fabricate composite materials involve injecting a metallic, 
ceramic or polymeric melt into a deformable porous material. This solid preform can be made of 
a sponge-like material, or of  a solid constituent in the form of  mats, fibers, whiskers, particulates, 
flakes, or wires (see, for example, Christensen 1979; Cook 1977; Gibson 1994; Isayev 1987; 
Macosko 1989; and Mallick 1988). 

After solidification of  the melt, the reinforcing network within the composite material carries 
the major  stresses and loads, while the solidified matrix material holds the reinforcing elements 
together, enabling the transfer of  the stresses and loads to them. 

These manufacturing processes, usually referred to as resin transfer molding (RTM), structural 
resin injection molding (SRIM), and squeeze casting, can be schematized as infiltration problems 
in initially dry porous media. In modelling them in the literature it is usually assumed that the solid 
preform is rigid, in spite of  the fact that several papers show or describe qualitatively deformation 
of  the solid constituent and emphasize the importance of  monitoring the dynamical evolution of  
the deformation and stress states to identify in advance possible inhomogeneities and damages in 
the reinforcing network (see Gonzalez-Romero & Macosko 1990; Han et al. 1993a, b; Kim et al., 

1991; Lacoste et al. 1991, 1993; Mortensen & Wong 1990; Rudd et al. 1990, 1992; Sommer & 
Mortensen 1996; Trevino et al. 1991; Yamauchi & Nishida 1995; Young et al. 1991a; and Preziosi 
1996 for a recent review on the subject). 

Furthermore,  from the industrial point of  view there is a crucial need to identify a good 
compromise between rate of  production and quality of  the product, such as, for example, obtaining 
a homogeneous composite material, and avoiding ruptures of  the reinforcing fibers which can lead 
to material failures. This requires a detailed description of the whole dynamics of  the coupling 
between the flow and the deformation of  the porous material. 

When a fluid flows through a deformable porous medium the forces associated with the flow 
deform the porous material. In turn, the deformation of the porous medium influences the flow. 
The competit ion among the stress in the solid element, pressure in the liquid element and inertial 
and body forces will determine the evolution of the system, which is very different from that 
experimentally observed when the coupling between fluid flow and deformation of  the porous 
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medium is absent. In fact, the strain distribution in a deformable porous medium is uniform if it 
is subjected to a steady mechanical compression and highly nonuniform if the strain is produced 
by fluid flow (see, for instance, figure 1 of Parker et al. 1987). 

Similar coupled flow/deformation problems have been studied in several different scientific fields: 
in soil mechanics (see, for instance, Barenblatt et al. 1990; Bear & Bachmat 1990; Lee et al. 1983; 
Lancellotta 1995, and references therein), in magma mechanics (Fowler 1985; Richter & McKenzie 
1984; Scott et a/. 1984, 1986, 1988; Spiegelman 1993a, b), in bio-mathematics (Barry & Aldis 1991; 
Holmes & Mow 1990; Kenyon 1976, 1979; Kwan et al. 1990; Lai et al. 1981, 1990; Mow e t a / .  

1979, 1980, 1984; Oomens e t a / .  1987; Sorek & Sideman 1986, and references therein), and in 
dealing with several industrial processes such as paper pulp rolling, fabric dyeing and drying, coffee 
brewing, and so on (see, Fasano et al. 1992, 1993; Lord 1955; and Taub 1967). 

Having in mind the application to those industrial processes involving flow through sponge-like 
materials and, in particular, injection molding and squeeze casting processes, we study in this paper 
the problem of the spontaneous relaxation of a compressed wet sponge and the infiltration of an 
incompressible liquid into an initially dry (or partially dry) deformable sponge-like material made 
from an incompressible solid in the slug-flow approximation. 

This assumption, which is acceptable when the driving pressure gradient is much larger than the 
driving force due to capillary pressure, allows the definition of a sharp front separating the fully 
saturated porous medium from the uninfiltrated portion. 

Our attention is focused, however, on the saturated region, assuming that the uninfiltrated 
porous material is rigid, as occurs for some synthetic sponges. The coupled problem obtained 
considering a porous material deformable both when dry and when wet is currently under study 
(Ambrosi & Preziosi 1996). 

After this introduction, the second and third sections of the present paper deal, respectively, with 
the formulation of the three- and the one-dimensional infiltration model, the fourth section with 
the formulation of the interface conditions and of the evolution equations for the boundaries 
delimiting the saturated region, and the fifth section with a discussion on the role of inertia and 
of several constitutive equations for the stress. 

It is found that the resulting one-dimensional model is of Stefan type, with suitable evolution 
equations describing the position of the interfaces. The system of partial differential equations in 
the saturated porous material is hyperbolic or parabolic according to whether the inertial terms 
are neglected or not, and to the stress constitutive assumptions. A simulation is performed to show 
the importance of these terms and the applicability of the model. Finally, a comparison with an 
infiltration experiment made by Sommer & Mortensen (1996) is performed. 

2. INFILTRATION MODEL 

Consider the infiltration of an incompressible liquid in a deformable porous material (sometimes 
called sponge in this paper for brevity) made up of an incompressible solid constituent. Deformable 
porous media models can be deduced on the basis of the theory of mixtures (see, Atkin & Craine 
1976; Bowen 1976, 1980; Rajagopal & Tao 1995; Truesdell & Toupin 1960), or by average methods, 
e.g. ensemble average (see Drew 1983; and Ishii 1975). A recent review of the subject with special 
attention to its application to composite material manufacturing has been done by Preziosi (1996). 

In the absence of chemical reactions and phase changes conservation of mass of each constituent 
is expressed by 

~-7 + v . ( 4 , v s )  = 0, [1] 

e t  + v . [ ( 1  - 4 , ) v d  = 0,  [21 

where ~b is the volume fraction of the solid constituent and Vs and VL are, respectively, the velocity 
of the solid and the liquid constituent. 
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The momentum equations for the constituents are 

•/~Vs ) 
pstp~---~- + Vs'VVs = V'Ts + ps(ag + m ~, 
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[3] 

p L ( 1 - - ~ b ) C ~ t L + V L ' V V L ) = V ' T L + p L ( 1 - - ~ ) g - - m  ~, [4] 

where ps and pL are true density of the solid and of the liquid constituent, respectively, Ts and TL 
are the so-called partial stress tensors, m ~ is the interaction force, which is related to the local 
interactions between the constituents across the interface separating them, and g is the gravitational 
acceleration. 

The main difficulty in using [3], [4] is in formulating and validating the constitutive relations for 
the interfacial force m ~ and the partial stresses Ts and TL appearing in them, since they cannot be 
measured directly. However, adding them gives 

c:OVm ) p (k-"~"- "3!- Win-VVm = - VPL + V" Tm -4- p¢g, [5] 

where p, = ~bps + (1 - ~b)pL is the composite density, i.e. the density of the mixture considered as 
a whole, Vm = [q~psVs + (1 -- C~)pLVL]/pc is the mass average velocity, T~ is the excess stress tensor 
for the mixture, and PL is the pore liquid pressure, which is constitutively undetermined as a direct 
consequence of the assumption that the two constituents are separately incompressible. 

Equation [5] is the momentum equation one would obtain considering the wet porous material 
as a whole, without concern about the copresence of solid and liquid constituents in it. In particular, 
the constitutive equation for Tm can be developed from appropriate experiments on the wet 
material. 

On the other hand, under some assumptions (namely, isotropy of TL, negligible contribution due 
to the acceleration of the liquid constituent compared, say, with the pressure gradient, linear 
dependence of m" on the velocity difference (see Bowen 1980) it is possible to deduce from [4] 
Darcy's law for the infiltration of liquids through deformable porous media 

1 
VL -- Vs = (I -- ~b)p K(B)(VPL - pEg), [61 

where/~ is the liquid viscosity, K is the permeability tensor, and B is the left Cauchy-Green strain 
tensor for the solid. 

Coherently with the assumption that the contribution due to the acceleration of the liquid 
constituent is negligible compared with the pressure gradient, the liquid acceleration is also dropped 
in [5] which then simplifies to 

ps~b(~ts+  Vs'VVs)=--VPL+V'Tm+[psq~+pL(1--dp)lg. [7] 

The two continuity equations [1], [2] imply that 

V.Vc = 0 where Vc = tpVs + (1 - q~)VL 

is the composite velocity. 
From Darcy's law [6] we can readily eliminate VL from [8] to obtain 

[8] 

V'[Vs--IK(B)(VPL--pLg)]= O. [9] 

The three-dimensional model is then obtained considering [1], [7] and [9]. 



1208 L. PREZIOSI et al. 

It is worthwhile to remember explicitly that the continuity equation for the solid constituent [1] 
can be written in Lagrangian coordinates as 

de tF  = --~b* [10] 

where F is the deformation gradient for the solid, ~b, is the volume ratio of the undeformed 
reference configuration and we have used the incompressibility assumption. 

3. THE ONE-DIMENSIONAL INFILTRATION MODEL 

Assume now that the solid and the liquid constituents are placed in a vertical tube (g = - gex), 
that both flow and strain take place along the vertical direction x and that the medium is isotropic 
in a plane perpendicular to this axis (such that the infiltration direction is a principal direction of 
the preform permeability tensor). 

In this case the only non-trivial component of the strain tensor is the e~ ® ex component. In 
particular, defining the Lagrangian strain tensor 

E = ½ (B  - I)  = ee~ @ ex, [111 

it readily follows that 

E= ( d e t B - 1 ) = ~ [ ( d e t F )  2 - 1 ] = ~  - 1  [12] 

and that the only non-constant component of the Cauchy-Green strain tensor is 

Bxx = (det F) 2 = ~-~, [13] 

which means that, in one-dimensional problems, the dependence of the permeability tensor K on 
B is equivalent to that on qS/qS,. 

The same is not true for the excess stress tensor Tm which refers to the whole mixture. In this 
case the possible dependence on the Cauchy-Green strain tensor involves not only the volume 
fraction (as in [13]), but also the fluid properties. 

Initially the sponge is at rest and compressed at a volume ration q~0(x). Only part of it dips into 
the liquid, say for x ~ [xB0, xv0], xB0 being the position of the border of the sponge in the liquid (the 
other end of the sponge is held fixed), and xT0 being the position of the liquid interface inside the 
sponge (see figure 1(a)). The rest is dry, i.e. 

tO(t = 0, x) = q~o(X) for [XBo, X XTO]. 
v~( t  = o, x )  = v ~ ( t  = O, x )  = o 

[14] 

At time t = 0 a pressure gradient is applied between the extrema of the sponge driving the 
infiltration of the liquid upwards into the sponge. As time goes by, the liquid which penetrates into 
the sponge forms a horizontal interface xT(t). This is an air-liquid interface at the top of the liquid 
separating the fully saturated from the dry part of the compressed sponge. At the same time the 
wet sponge expands downwards into the pure liquid forming another horizontal interface xB(t). 
This is the bottom border of the sponge that lies within the liquid (see figure 1 (b)). The infiltration 
model we will deal with is, of course, valid in the fully saturated region [xs(t), xv(t)]. 

In doing this, capillary phenomena are simplified assuming the existence of a sharp front which 
divides the fully saturated porous medium from the remaining uninfiltrated portion. This 
assumption, often called slug-flow approximation, is valid when the applied pressure is much larger 
than the capillary pressure. 

In our analyses we also assume that the dry sponge is stiff. In fact, there are many porous 
materials that are rigid when dry and soften when wet (e.g. some synthetic sponges). The case in 
which the sponge is not rigid is considered in Ambrosi & Preziosi (1996). 
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In one-dimension, [8] implies that the composite velocity Vc does not depend on x, that is 

~bVs + (1 - ~b)VL = C(t). [15] 

Since the composite velocity is continuous across xB(t) (see Mfiller 1975; or Preziosi 1996), going 
all the way down to where there is only pure liquid, it is evident that C(t) is equal to the inflow 
velocity. 

Equation [15] and Darcy's law [6] give 

K(O) ( eL + ) 
v~ = c ( t )  + ~ \ ax pLg , [16] 

dp K(~) (OIL ) 
VL : C(t) - 1 - gp t~ k Ox + pLg , [17] 

Or 

aPE /~ [Vs - -  C ( t ) ]  - -  Peg. [ 1 8 ]  
Ox - K(¢) 

The one-dimensional model then takes the following form 

~,~ ,~4, , e V s  
(~--7 + v~xx + ~ ~-x = o [19] 

ps~0~--~-- + Vs x = K(~b) ~ - q~(ps - pL)g [20] 

for x ~ [xB(t), Xr(t)], where the constitutive relation for the excess stress a is still to be specified. 

Net 

Dry 
sponge 

X=XTo 

Wet sponge 

X=XBo 

(x) 

+0 (x) 

x=xv(t) 

+ (t,x) 

Clear 
fluid x=xB(t) 

IJMF 22/6--G 

x=i x=i 

t=0 t 

Figure 1. Schematization of  the one-dimensional infiltration problem. 
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The quantity C(t), which appears in [16]-[20] depends on how the liquid constituent is pushed 
into the sponge. The simplest case is when we are completely able to govern the inflow, for instance, 
we are able to steadily push liquid into the porous medium, which means C(t )  = const. 

A more interesting situation arises when the pressure difference 

A P e ( t )  = P ~ ( x . ( t ) )  - P ~ ( x ~ ( t ) )  [21] 

between the top and the bottom interface is prescribed (say, constant). In setting the pressure at 
the top interface, for example equal to the atmospheric pressure, we assume that the gas viscosity 
is so small that it is easily expelled from the dry portion of the porous material, offering negligible 
resistance. In this case, integrating [18] we have 

~rT (1) ~XT(/} 
APL(t) = C(t )  It d x  ItVs(t, x)  d x  + pLg[XT(t) -- XB(t)], 

~,~,,~ K(q~(t, x)) J~,~,~ K((a(t ,  x ) )  [221 

o r  

1 {APL(t)- pLg[xT(t)- x.(t)]} + f~'~ K ~ f - ~  dx 
It ~x.,,, ( ~ ( ' ) )  

C(t) = [23] 

.~,~ K(ck(t ,  x ) )  

4. EVOLUTION OF THE INTERFACES AND INTERFACE CONDITIONS 

The system of equations [19], [20] has to be integrated in the time-varying domain [xs(t), xT(t)]. 
We have then to determine the evolution equations for xB(t) and xr(t) and to join to [19], [20] 
proper interface conditions on ~b and Vs. 

The bottom interface xB(t) is a material interface for the porous medium and therefore it has 
to move with the velocity of the porous medium at the bottom interface 

dxB 
dt  (t) = Vs(t,  x , ( t ) ) .  [24] 

Similarly, the top interface xv( t )  is a material interface for the liquid and, therefore, it has to 
move with the velocity of the liquid at the top interface 

dXT 
dt (t) = VL(t, xT(t)). [25] 

However, the composite velocity is constant throughout the sponge and has to be continuous 
across xT(t)  (see Mfiller 1975; or Preziosi 1996). If the dry porous material is assumed to be rigid, 
then evaluating [15] on both sides of  the top interface xv( t )  gives 

C(t )  = 49(t, Xv( t ) )Vs( t ,  xr ( t ) )  + [1 - (a(t, Xr(t))]VL(t ,  xT(t))  = [1 -- 49o(XT(t))]VL(t, xv(t)) .  [26] 

This allows to rewrite [25] as 

dxT C( t )  [27] 
dt (t) = 1 - qSo(xv(t))' 

and to deduce the boundary condition 

Vs(t,  xv(t)) = 4~(t, xT(t))  - 49o(Xr(t)) C(t) .  [28] 

The other boundary condition is the stress-free condition at the bottom interface 

a( t ,  x . ( t ) )  = 0. [291 
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It is worthwhile to observe explicitly that the time derivative of the total solid mass wet by the 
liquid is 

] --dr o~BI,J ~b(t, x) dx = ~b(t, xx( t ) )  - Vs(t, xx( t ) )  - 1 - - - ~ - ~ t ) )  C(t) .  [30] 

This relation is useful to control the computational error made in the numerical integration. 
In particular, if C(t)  = 0, then the total solid mass wet by the liquid is conserved. This is a direct 

consequence of the stiffness assumption on the dry sponge. 

5. THE ROLE OF INERTIA AND OF THE STRESS CONSTITUTIVE EQUATION 

In consolidation theory and in all fields of application of deformable porous media models, the 
inertia of the solid constituent is often neglected. Even when inertial terms are retained in the 
derivation of the model (see, for instance, Scott & Stevenson 1986; Spiegelman 1993a; Kenyon 
1976; and Mow et aL 1984), they are eventually neglected in the applications. 

This approximation is equivalent to saying that the stress in the solid and the pressure exerted 
by the liquid balance each other, setting each solid element in equilibrium (in this section gravity 
is neglected for sake of simplicity). In fact, in this case, the momentum equation [5] takes the form 
of a stress equilibrium equation 

Oa OPL 
O X -  OX" [31] 

The velocity of the liquid and of the solid constituents are then determined by the joined action 
of Darcy's law and of the conservation equation [15]. In fact, in [16], [17] the pressure gradient 
is functionally related to the volume ratio through [31] and the constitutive relation, that is a change 
in liquid pressure readily determines a change of volume ratio. The change in volume fraction and 
pressure gradient will then determine a change in the relative flow of the liquid with respect to the 
solid preform, which has to be such that the composite velocity is x-independent. 

In this conceptual schematization of events one excludes the situation whereby the solid preform 
can be deformed by the direct action of the change of the liquid pressure gradient, assuming that 
the pressure gradient is entirely absorbed as stress in the solid preform. Keeping, instead, the 
inertial term of the solid constituent allows the non-equilibrium between stress in the solid element 
and liquid pressure acting on it to influence directly the evolution of the wet porous medium. This 
can be a non-negligible effect, as for example in composite manufacturing by infiltration and in 
some bio-mechanical problems. 

In this section attention is focused on the effects of the assumptions made on the relative 
importance of the inertial term and on the form of the stress constitutive relation. It is shown that, 
as a consequence of these assumptions, the model possesses different mathematical characteristics 
and that inertial terms are important at early times, where the meaning of early depends on the 
physical parameters and on the constitutive assumptions. This section concludes with a description 
of a simulation that was performed to quantify these effects. 

The main difficulty in dealing with deformable porous media, however, is not in treating the 
inertial term, but in correctly formulating the stress constitutive relation for the wet material as 
a whole. This is due to the fact that at the present time there are not enough experimental results 
available to guide the choice of one constitutive relation over another, but only general 
measurement of the viscoelastic properties of the constituents and observation of viscoelastic 
behavior of the wet material (see, Chan & Hwang 1993; Han et al. 1993a, b; Kendall & Rudd 1994; 
Kim et al. 1991; Parker et al. 1987; Patel et al. 1993; Rudde t  al. 1990, 1992; Sommer & Mortensen 
1996; Trevino et al. 1991; Young et al. 1991b). 

In fact, despite recognizing the importance of viscoelastic effects, most papers perform or report 
on measurements of the stress-strain relation in uni-axial compression tests in the equilibrium 
condition 

tr = tr(Q, [32] 
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ruling out any viscoelastic effect. This corresponds to neglecting the effect due to the presence of 
the liquid matrix in the pores and to approximating the wet sponge as an elastic material. 

In reality, the solid preform and the liquid matrix cannot deform independently but have to carry 
the load by joint deformation. This, however, does not require adding two constitutive equations, 
one for each constituent, since 

Tm = qbTs -4- (1 - (~)TL - -  < p ( V  - -  Vm) ® ( V  - -  Win)>, [33] 

where the last term is an averaged interaction term which is hard to model (see, for instance, Drew 
1983; Ishii 1975; Preziosi 1996). It is convenient, therefore, to look directly for a constitutive 
relation for the wet material as a whole which possesses the characteristics exhibited by 
experimental observations. 

The viscoelastic behavior of composite materials in their final solid form has been experimentally 
studied by many authors (see, for instance, Christensen 1979; Cook 1977; Gibson 1994; Isayev 
1987; Macosko 1989; Mallick 1988, and references therein). But in modelling the infiltration of a 
deformable medium it is necessary to know the stress-strain functional relationship when the 
matrix material is still in its liquid form. This piece of information is lacking for the materials 
usually used in composite manufacturing. The only paper we found that gives quantitative data 
of the stress relaxation of a mixture is the one by Kim, et al. (1991). 

Some more information can be obtained looking at similar studies dealing with the viscoelastic 
properties of  articular cartilages (see, for instance, Holmes 1986; Holmes & Mow 1990; Kwan et al. 

1990; Lai et al. 1981; Mow et al. 1979, 1980, 1984). In fact, the human body itself can be divided 
into several subsystems that can be schematized as deformable porous media permeated by organic 
liquids (articular cartilages, arteries, lungs, liver, kidneys, muscles, cornea, heart, brain, 
subcutaneous layer, and what is generally called in biomathematics soft tissue). Of course, in 
describing these systems osmotic effects should also be included. However, these studies show 
experimental evidences for the need to model the mixture at least as a VoigWKelvin solid 

) T m = r /  2 E ~ - +  E , [34] 

or as an anelastic solid 

2•Tm ( ~ E  ) 
x - ~  q- Tm= r/ ZE-~- + E , [35] 

where 

~ M  ~ M  
~ - c~- + V ,~ .VM - W M  + M W  - a ( D M  + M D )  [361 

is the convective derivative, D and W are the symmetric and antisymmetric part of the mass average 
velocity gradient and a is a parameter ranging between - 1 and 1 (see, for instance, Joseph 1990). 

The fact that the convective derivative is based on the mass average velocity is related to the 
fact that the constitutive equation refers to the momentum equation of the mixture as a whole, 
without distinguishing macroscopically its components. 

The constitutive equation [34] is not the only or the most general one that might be tried for 
our wet sponge. However, three parameter models are commonly used for viscoelastic fluids and 
solids (see Fliigge 1975; Freudenthal 1966; Joseph 1990). Rheometrical methods for measuring the 
parameters are well known. Experiments are required in this direction in order to open a proper 
discussion. For instance, we think it could be useful to perform dynamical tests aimed at evaluating 
the response of the wet sponge compressed at different volume ratios to oscillatory twist and 
compression. 
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___ / 

Figure 2. Behavior of  the dimensionless (a) stress Z(q~)/Z(~bc) and (b) permeability K(dP)lK(dp,) as a 
function of  the volume ratio. In the simulation ~b, = 0.135175, q~c = 1/3, E(q~c)= 9.7076 x 104Pa and 

K(q~,) = !.685 x 10-"  m 2. 

It is useful to recall explicitly that in one dimension, strain and volume ratios are related through 
[12] and that measurements usually give the stress-volume ratio relation with the stress taken 
positive in compression, i.e. 

dY~ 
a = - 57(~b), with E'(~b) = ~ > 0 [37] 

where 

(f_ ,)) 
(see figure 2(a)). 

In one dimension we can then write 

= - a (E) ,  [381 

j t - ~+  v=~-Za~ ax = -,¢,~Lat + VmT~ ~ -  1 a x j  

a~ 

where we have used [12] and the continuity equation [19]. Using [15], we can express I'm as 

pc Vm = (ps -- pL)dpVs + pLC(t). [40] 

In our one-dimensional mixture model we allow the parameters in the constitutive equation to 
depend on the material parameters of the fluid and the solid constituents and on the strain, as 
occurs for models of White-Metzner type. This is done in order to be consistent with the nonlinear 
elastic setting commonly described in steady compression tests. 

Taking into account [39] the constitutive relation for one-dimensional deformations of an 
anelastic solid (see [35]) can then be written as 

L ( 4 > ,  ~) ?--/+ v =  ~ x  - 2a~r + ~ 

L ~ ) ~ 220(~b,/~) 04) ,dVs } 
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while that of  a Voigt-Kelvin solid (see [34]) as 

(Vm-- 
or= - Z ( ¢ , / ~ )  4) ~ - 1  . [421 

Going back to the evolution equation, if inertia is neglected, then the system of equations [19], 
[20] can be reduced to the single equation 

a t  + c(t)  + -~ K(¢)¢  ~ = 0 [431 

where we have neglected gravity for sake of simplicity. 
Assuming that the mixture behaves like an elastic material implies joining the constitutive 

relation [37] to [43] which yields the nonlinear convection-diffusion equation 

8-7 + C(t)  8--~ = ~ 8x K ( ¢ ) ¢ Z ' ( ¢ )  ~ . [441 

If the mixture is modelled as an anelastic solid using [41], or as a Voigt-Kelvin solid using [42], 
we have a model which is still parabolic, but with a structure which presents similarities to the KdV 
equation and to the models obtained studying magma mechanics (Fowler 1985; Richter & 
McKenzie 1984; Scott et al. 1984, 1986, 1988; Spiegelman 1993a, b). We remind that these models 
admit solutions for finite-amplitude solitary waves of permanent form and constant velocity, which 
thus might also be allowed by the present model. In this case, in analogy with what occurs in 
fluidized beds, one could talk of  void waves in deformable porous media. 

If, instead, the inertia of the solid constituent is not neglected and the mixture is modelled as 
an elastic material, then the resulting model 

ps¢ ~Y-t- + Vs T-£~ ) + z'(¢) ~ + ~ [a  - c(t)l = o [451 

is hyperbolic. The same is also true if an anelastic constitutive equation is combined with [19], [20]. 
In the simulation which follows we integrate the different models considered above under the 

same physical situation but for different values of  the parameters to analyze the differences between 
the results. In order to do that it is convenient to introduce dimensionless variables by scaling 
lengths, time and velocities by the characteristic length XT0- XB0, time [#(XT0- XBo)2]/KrEc, and 
velocity KflZc/[~t(XTo -- XB0)] where K~ = K(4~,) is the permeability of the relaxed sponge (i.e. 4~, is 
such that Z(¢r) = 0) and Zc = E ( ¢ J  is the stress of the sponge at a given volume ratio 4~c, say 
¢< = ¢o(XTo) .  

In this way the momentum equation becomes 

{ O Vs O Vs'~ _ 1 86 
- -  [Vs - (?(t)] + ~ x '  [461 

where 

[, 2 

= psEc (XTo-- [471 

is a dimensionless parameter which gives a measure of the relative importance of the inertial term. 
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All variables in [46] are now dimensionless. In particular,/<(~b) = K(¢) /K(¢, ) ,  # = a/Z(¢c), and 
the dimensionless inflow velocity C(t) is either given or determined by the dimensionless form of 
[23] 

APL(t) ~'xr¢,) Vs(t, x) Z-----~ + / dx 
~.,~,~ g'(¢(t, x)) 

C ( t )  = , [ 4 8 ]  

fx xT(t) dx 
~<,, g (¢ ( t ,  x)) 

if the pressure drop APt between the sponge extrema is given. 
The dimensionless form of the remaining equations is formally unchanged. The initial-boundary 

value problem is, then formed by [19] and [46] joined with one of the constitutive equations [37], 
[41], or [42], with the evolution equations for the boundaries [24], [27] and the boundary conditions 
[28], [29]. 

Furthermore, it is assumed that the sponge is initially at rest and compressed as a solid volume 
fraction 

~br + (¢c - ¢,) tanh nx 
t anhn O~<x~< 1 

¢ =  ¢~ x > l  [491 

with n = 10, ¢¢ = 1/3, and where (~r is the volume ratio of the relaxed state, i.e. E(¢r) = 0. 
In performing the simulation we used the data relative to the polyurethane sponge used in the 

experiments made by Sommer & Mortensen (1996). 
The value of ~ depends strongly on the initial length of the wet sponge. For the polyurethane 

sponge we are considering it can reach values of order one for millimeter-sized specimens. Still 
higher values can be achieved in composite manufacturing since the solid preforms used in 
applications have higher densities, permeabilities and stresses. 

Figures 3-6 present computations which bring into focus various special effects associated with 
inertia and different constitutive equations. In order to illustrate the effect of the inertial and of 
the viscoelastic terms we first consider in figures 3 and 4 the case of spontaneous relaxation of an 
initially compressed sponge immersed in the pure liquid with no pressure gradient forcing the 
infiltration process, i.e. C(t) = O. 

Figure 3 shows the evolution of the sponge assuming that the wet sponge behaves like an elastic 
material. In figure 3(a) inertia is neglected, while figure 3(b) and (c) give the evolution of the volume 
fraction vs x at different times when inertia is considered. We remind that the model is parabolic 
in the former case, and hyperbolic in the latter case. The hyperbolic character can be easily 
identified when the continuous evolution of the system is looked at directly on the computer screen 
and is more pronounced at higher ~ .  One can actually notice that the relaxed state propagates 
into the sponge. The propagation of condensation-rarefaction waves may lead, especially at higher 
~' and early times, to the development of regions near the border of the sponge x = xB(t) with 
volume ratio smaller than the one corresponding to the relaxed state (that is, ¢ < Cr). From a 
practical point of view this is an undesirable effect for those fibrous materials which are particularly 
fragile to expansions. This over-relaxation of the sponge can be already identified in figure 3(b), 
(c) in spite of the fact that the numerical integration starts from a smooth initial condition. 

Figure 4 shows the evolution with inertia considered and assuming that the wet sponge behaves 
like a Voigt-Kelvin solid with 2~ = 0.1. The higher 2~ is the smoother the evolution is. In particular, 
it inhibits over-relaxation. The effect of the additional term in the constitutive equation is felt for 
times at most one order of magnitude larger than 2,. 

Figure 5 presents results of a simulation o f t h e  infiltration into the dry sponge compressed at 
a constant volume ratio ¢c = 1/3 due to a constant pressure difference AP = P ( x s ) -  P ( x r ) =  
E(¢¢). The pressure difference pushes liquid into the sponge, so that the front x = xr dividing the 
wet sponge from the dry sponge advances. At the same time the other front relaxes into the liquid. 



(a) .35 

At early times the filtration of  the fluid into the sponge may cause over-compression of the 
sponge near x = XT (i.e. regions with volume ratio ~b > ~c), because the permeability there is much 
smaller (remember that the dry sponge is assumed to be stiff, otherwise this over-compression 
would compress further the dry sponge). This is not evident in figure 5 because of  the time scale 
but is put in evidence in figure 6(a). This effect is more pronounced for larger values of the inertial 
parameter ~ and less pronounced if 2~ # 0 as is shown in figure 6(b). The introduction of a 
non-vanishing 2~ gives little differences at longer times. 
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x, 1.1 

Figure 3. Spontaneous  relaxation of  a wet compressed elastic sponge. The fully relaxed sponge has a solid 
fraction ~b, = 0.135175 (see figure 2(a)). The dry sponge (x > 1) is compressed at a volume fraction 
q~c = 1/3. Referring to [46], ,~ > 0 gives rise to hyperbolic propagat ion,  whereas ~ = 0 gives rise to a 
nonlinear diffusion equat ion (see [44]) with a characteristic mono tone  relaxation as shown in (a). Larger 
values of  ~ give rise to wave propagat ion,  and over-relaxation (q~ < q~,) as is evident in (b) and (c) which 
correspond,  respectively, to ~ = 0.1 and ~ = 1. The solid volume fraction is plotted vs x at different times 

t = 0.1, 0.2, 0.4, 0.8, 1.6, 2.4. The dotted line represents the initial condition. 
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Figure 4. Spontaneous relaxation of a wet compressed Voigt Kelvin sponge, i.e. [19, 20] combined with 
[42] with ).~ = 0.1. The fully relaxed sponge has a solid fraction ~br = 0.135175 (see figure 2(a)). The dry 
sponge (x > 1) is compressed at a volume fraction ~b~ = 1/3. The coefficient of the inertial term in [46] 
is ~ = 0.1 in (a) and .~ = 1 in (b). Higher values of 2, correspond to a larger dissipation which has the 
effect of smoothing the oscillations which arise for the elastic sponge. The solid volume fraction is plotted 
vs x at different times t = 0.1, 0.2, 0.4, 0.8, 1.6, 2.4. The dotted line represents the initial condition. 
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Fina l ly ,  in figure 7 we present  a compa r i son  with some exper imenta l  da t a  ob ta ined  by  S o m m e r  
& Mor t ensen  (1996) who  pe r fo rmed  an inf i l t ra t ion exper iment  in a d ry  sponge- l ike  ma te r i a l  which 
has some similari t ies  with our  p rob lem.  Their  exper imenta l  setting, however ,  is no t  fully consis tent  
wi th  our  assumpt ions ,  and  therefore  the compa r i son  can only be qual i ta t ive .  In  fact,  

(1) Thei r  d ry  sponge  is not  stiff, and  in fact it appea r s  to relax as t ime goes by. 
(2) Thei r  inf i l t ra t ion exper iment  is near ly  unid i rec t iona l  because  o f  the presence o f  " l a t e ra l  s t ra in  

exper ienced by the po rous  med ium (which therefore)  is associa ted  with finite velocit ies in 
y and  z d i rec t ions"  ( f rom S o m m e r  & Mor tensen  1996). 

(3) It is ha rd  f rom their  da t a  to ident i fy the init ial  condi t ions ,  which, however  will not  have 
V s ( t  = O, x )  = O. 

Our  pa rame te r s  depends  crucial ly  on  the init ial  width  xT0 - xB0 o f  the wet sponge.  W e  identif ied 
this by cons ider ing  the m o m e n t  at  which the b o t t o m  bo rde r  o f  the sponge  has zero velocity,  which 
occurs  at  t ~ 5 s and  assume that  this is t rue for  all x,  which is no t  str ict ly true. In  this ins tant  
the width  o f  the wet sponge  appea r s  to be a b o u t  4 cm. 

O u r  results  also depend  on qS0(x), which canno t  be ob ta ined  f rom their  data .  
In  o rde r  to c o m p a r e  our  numer ica l  results  with the jus t  men t ioned  exper imenta l  da t a  we need 

in t roduce  the d imensionless  var iable  

_ x -  x B ( t )  
rl x r ( t )  - x B ( t )  [50] 

which maps  the in terval  [xB(t), xv(t)] into the fixed interval  [0, 1]. 
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Figure 5. Infiltration in a sponge compressed at a constant volume ratio ~bc ~ 1/3 due to a pressure 
difference P(XB) -- P(XT) = 2~(q~c). The front x = xB(t), i.e. the border of the wet sponge, travels to the 
left, while the infiltration front x = XT(t) dividing the wet sponge from the dry sponge travels to the right. 

We compared  our  numerical results only with the experimental data  they measure after 17 and 
31 (which correspond to our  12 and 26 s because of  our  defining the initial condit ion after 5 s), 
since for later times the relaxation o f  the dry sponge appears to influence the experimental data. 

We observed that  the initial condit ion 4~0(x) strongly influences the evolution o f  the interfaces 
xB(t) and XT(t), but  when the interval is mapped  onto  [0, 1] the solution for t > 15 s appears to 
be insensitive to variat ion in th0(x). Taking into account  the differences between Sommer  and 
Mortensen 's  and our  set up, the compar ison can be considered satisfactory. 

The simulation presented above gives an indication o f  possible scenarios; but  in order  to perform 
a more  detailed simulation it is necessary to have more  data  on the properties o f  the wet sponge. 
Once this is available we can use the modelling procedure presented here to develop a systematic 
simulation o f  the technological problem. 

6. C O N C L U S I O N S  

In this paper  we have presented a model  which can be applied to those industrial processes 
involving flow through sponge-like materials and, in particular, to some processes used to fabricate 
composi te  materials. 

The coupled f low/deformation problem is considered in detail, which is fundamental  in some 
of  the processes ment ioned above. The sensitivity o f  the model  to the assumption made on the 
importance o f  the inertial term and on the constitutive relation is examined and shown to have 
significant dependence on both. For  instance, elastic constitutive models may lead to 
over-relaxation near the sponge border,  and wave propagat ion,  while Voigt-Kelvin  constitutive 
models have a smoothing  effect. A proper  discussion can be opened when the results of  dynamical  
tests on wet sponge-like materials are available. 
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Figure 6. Blow up of  figure 5 to show over-compression (4~ > ~c) of  the sponge near x = xr(t) at early 
times. Over-relaxation (4~ < ~br) is also present (but not  so evident) in (a) which corresponds to ~ = 0.1, 
2, = 0. In (b) ~ = 0.1, 2, = 0.1. Over-compression is smoothed out  and over-relaxation does not  occur. 
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Figure 7. Comparison of numerical results with experimental data obtained by Sommer & Mortensen 
(1996). The interval [x,(t ), xT(t)] is linearly mapped onto [0, l] through [50]. The results obtained for t = 12 
and 26 s are in good agreement with the experimental data measured at t = 17 s (squares) and t = 31 s 
(circles). Remember that our simulation starts about 5 s after Sommer & Mortensen (1996) record 

their data. 

The model is then applied to the case in which a liquid is pushed through a dry porous material 
which requires the determination of the evolution equations determining the position of the borders 
of the fully infiltrated region and the relative interface condition. 

Finally, a comparison with a similar experiments done by Sommer & Mortensen (1996) is 
performed yielding a satisfactory agreement. 
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